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CONVERSION FACIORS

The following report uses inch-pound units for consistency with U.S. Army
Corps of Engineers requirements. The units are frequently abbreviated using the
notations shown below. The inch-pound units can be converted to SI units by
multiplying by the factors given in the following list.

Inch-pound unit To obtain
to convert Multiply by SI unit
Foot (ft)--------=-mmmmmmmmmmeeeeeee 0.3048 Meter (m)
Foot per second (ft/s)----------~---- 0.3048 Meter per second (m/s)
Foot per day (ft/d)------------------ 3.528x10" Meter per second (m/s)
Square foot per second (ft?/s)------- 0.0929 Square meter per second
(m?/s)
Cubic foot per second (ft3/s)-------- 2.832x10"%  Cubic meter per second
(m*/s)
Mile (mi)-=--=====-=m-mmmmmmmmmanae 1.609 Kilometer (km)
Square mile (mi%)------=--=-==--~---- 2.59 Square kilometer (km®)
Gallon per day (gal/d)--------------- 4.384x10-° Cubic meter per second
(m*/s)
Million gallons per day (Mgal/d)----- 4.384x10~% Cubic meters per second
(m3/s)
Gallon per day per foot [(gal/d)/ft]- 1.438x10-7 Square meter per second
(m?/s)
Inch per year (in/yr)----------=----- .0254 Meter per year (m/a)



TWO-DIMENSIONAL DIGITAL GROUND-WATER MODEL
OF THE MEMPHIS SAND AND EQUIVALENT UNITS,
TENNESSEE-ARKANSAS-MISSISSI PPI

ABSTRACT

A digital model simulating ground-water flow in the Memphis Sand and
equivalent units underlying the Memphis metropolitan area was constructed
and tested and found to simulate historic water levels within 5 feet of
observed for 75 percent of the control points. Split-sample testing ver-
ified that the model could reproduce water levels for pumping configura-
tions other than those for which it was developed.

Utilization of the model for predictive purposes requires input for
pumping locations, pumping rates, and duration. Output includes a tabled
computation of water level for each grid node and a contoured potentio-
metric map for the area.

The modeling effort refined the concepts of flow in the aquifer
which at one time was considered to be essentially homogenous. Zones of
less transmissivity were determined during the model testing phase to
provide the best overall calculated response. These zones, which closely
match the locations of fault zones hypothesized by previous researchers,
appear to restrict flow between the aquifer in the Memphis area and to
the west in Arkansas. Calibration also indicated that leakage was non-
homogeneous throughout the area. Zones of high leakage along the upper
reaches of the Wolf and Loosahatchie Rivers; upper reaches of Nonconnah
Creek, and the alluvial aquifer of the Mississippi River alluvial plain
were essential in simulating observed water levels. Electric logs from
these suspected zones of leakage commonly show thinner confining clays or
sandier zones within the confining layer as compared with areas where
leakage is low. ’

INTRODUCT ION

The Memphis area has experienced a continuing increase in ground-
water withdrawals with resulting water-level declines since 1886, when
the first well was completed in the major aquifer, the Memphis Sand.
Although the aquifer is capable of supplying the present pumping demand
of almost 195 Mgal/d, its importance as an intensively utilized resburce
requires that it be effectively managed and protected, particularly in
light of anticipated growth in the area.

In response to this requirement, a digital ground-water model that
simulated two-dimensional flow in the leaky, artesian Memphis Sand and
equivalent units was constructed by the U.S. Geological Survey at the
request of the Memphis District, U.S. Army Corps of Engineers, as part of
the Memphis Metropolitan Area Urban Study. This model, described herein,
can be used to determine resource adequacy and to help establish a gener-
al management plan for usage of ground water from the aquifer.
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Previous Studies

Memphis and the surrounding area have been intensively studied with
respect to water resources. Some of the more notable works include Wells
(1931 and 1933), Kazmann (1944), Schneider and Cushing (1948), Criner and
Armstrong (1958), Criner and others (1964), Moore (1965), Nyman (1965),
and Bell and Nyman (1968). Particularly helpful was the compilation by
Criner and Parks (1976) which summarized pumpage and water-level data for
the Memphis area, and the water-level map by Graham (1979). Records of
water levels from 1936 through 1973 have been issued periodically in U.S.
Geological Survey Water-Supply Papers 817, 840, 845, 886, 907, 937, 945,
987, 1017, 1024, 1072, 1097, 1127, 1157, 1166, 1192, 1222, 1266, 1322,
1405, 1538, 1803, 1978, and 2171.

Ryling (1960), Plebuch (1961), Halberg and Reed (1964), and Halberg
(1972) included data describing historic water levels and pumpage from
Arkansas; Davis and others (1971) include the same for Kentucky; and
Callahan (1973), Dalsin and Bettandorff (1976), and Newcome (1976) pro-
vide these data for Mississippi.

Regional and local studies relating to the geology of the Memphis
area have been made by Fisk (1944), Caplan (1954), Stearns and Armstrong
(1955), Stearns (1957), Cushing and others (1964 and 1970), Boswell and
others (1968), Hosman and others (1968), Payne (1968), and Stearns and
Zurawski (1976). Krinitzsky and Wire (1964) described the Mississippi
River alluvium and its hydrology, and Reed (1972) summarized the results
of an analog simulation of the Sparta Sand in the Mississippi embayment.
Parks (1973a, 1973b, 1974, 1975, 1977a, 1977b) has mapped the geology of
selected quadrangles within the Memphis area.

Data used in this study that have not been published include electric
logs, well completion data, driller's records, geologic logs, summaries of
pumping tests, inventories of pumpage, and individual records and maps of
historic water levels. These records are primarily in the files of the
U.S. Geological Survey, Water Resources Division; Tennessee Division of
Geology; Tennessee Division of Water Resources; and Memphis Light, Gas
and Water Division (MLGN). Table 1 shows the addresses and phone numbers
of these and other agencies that are the primary sources of ground-water
and geologic information. Additional sources of unpublished information
exist, but they are generally not the primary repository of the data.
Table 2 contains a summary of the published reports of the area.

Description of the Study Area

The study area is centered within the Memphis metropolitan area, and
includes approximately 1,000 square miles in Shelby County, Tenn., and
parts of adjacent counties. Figure 1 shows the general location of the
study area; county boundaries and identification are given in figure 6.
This area approximately coincides with the Corps of Engineers' metropoli-
tan study area. Although a much larger area simulating the natural
boundaries of the regional aquifer system was incorporated in the model,
it is described in this report only in its hydrologic relation to the
Memphis area.



Table 1.--Primary agencies that maintain ground-water information
of the Memphis area

U.S. Geological Survey, Water Resources Division (ground-water occurrence,
water use, and two-dimensional ground-water flow model)

Memphis Office Nashville Office

204 Federal Office Building A-413 Federal Building

167 N. Main Street U.S. Courthouse

Memphis, TN 38103 Nashville, TN 37203
phone (901) 521-3229 phone (615) 251-5424
Little Rock Office Jackson Office

Room 2301 Federal Office Building Suite 710 Federal Building
700 W. Capitol Avenue 100 West Capitol Street
Little Rock, AR 72201 Jackson, MS 39201

phone (501) 378-6391 phone (601) 960-4600

Tennessee Department of Conservation, Division of Geology (geologic data)

Memphis Office Nashville Office

c/o Earthquake Information Center G5 State Office Building
Memphis State University Nashville, TN 37219
Memphis, TN 38152 phone (615) 741-2726

phone (901) 454-2779

Tennessee Department of Conservation, Division of Water Resources
(well-completion data, water use, ground-water data)

Memphis Office Nashville Office

1109 A State Office Building 4721 Trousdale Drive
Memphis, TN 38103 Nashville, TN 37219
phone (901) 529-7294 phone (615) 741-6860

Memphis Light, Gas, and Water Division
(drilling information, pumping, water-level data)

P.0. Box 430
Memphis TN 38101
phone (901) 528-4011

U.S. Army Corps of Engineers
(well-drilling information; stratigraphy; lithology, primarily concentrated in
alluvial plain of Mississippi River; two-dimensional ground-water flow model)

Memphis District

U.S. Army Engineer District, Memphis
Corps of Engineers

668 Clifford Davis Federal Building
Memphis, TN 38103

phone (901) 521-3635
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Geologic Setting

The study area is near the center of the northern half of the
Mississippi embayment, a structural trough that at Memphis has been
filled by about 3,000 feet of unconsolidated gravel, sand, silt, and
clay. The trough axis strikes N. 30° E., with the present course of the
Mississippi River approximately marking the axis. Near Memphis, the axis
of the embayment plunges southwestward at about 10 feet per mile.

Fisk (1944), Criner and others (1964), and Stearns and Zurawski
(1976) are among researchers who feel there is evidence for faulting in
the study area. However, abrupt facies changes, lack of marker beds, and
vertical lithologic similarity of sediments make positive fault defini-
tion difficult.

Stratigraphically, the study is limited to the Memphis Sand, and to
those geologic units that may have a direct hydrologic relation to the
Memphis Sand (table 3). This formation, which ranges from 500 to 880
feet thick in the Memphis area (Criner and Parks, 1976), is made up of
fine- to coarse-grained sand and subordinate lenses of clay and lignite.
Geophysical logs of many wells indicate that the lower part of the
Memphis Sand may contain clay beds that are areally more extensive than
those in the upper part of the formation. Even the thickest of the clay
beds is discontinuous, however, and the Memphis Sand is considered a
single hydrologic unit (Criner and others, 1964).

At most places in the study area, the Memphis Sand is overlain by
beds of clay, sandy clay, fine-grained sand, and lignite that are
assigned to the undifferentiated upper part of the Claiborne Group and
the Jackson Formation. Within the Memphis area this sequence of beds
forms a zone that varies in thickness from 350 feet at Mallory well field
to a feather edge where it pinches out in southeastern Shelby County.
Where present, these fine-grained sediments retard the downward movement
of water from the overlying formations and form the upper confining bed
for the Memphis Sand. Geophysical logs of wells throughout the area show
that both the thickness and nature of the confining bed are variable.

South of the study area, the Memphis Sand and its equivalent units
thicken along the axis of the Mississippi embayment. The units crop out
on the east side of the embayment; on the west side they have been exten-
sively eroded and truncated, and younger Mississippi River alluvial sedi-
ments have been deposited directly on top of them. This relationship of
the Memphis Sand and overlying alluvium is called a subcrop, and occurs
throughout the subsurface in the Mississippi River alluvial plain except
where a segment crops out at the surface as part of Crowleys Ridge in
Arkansas (Hosman and others, 1968). These generalized relationships are
shown in figure 2.

South of Memphis, approximately along lat 35° N., a zone of transi-
tion (facies change) occurs in the Memphis Sand. The middle sand units
become increasingly clayey, and effectively separate the top sand unit
from the bottom sand unit. In Arkansas, the interval equivalent to the
Memphis Sand includes the Carrizo Sand, the Cane River Formation, and the



s pue
AOT[Jd 3104 UJ 13}em 10] poq. Jujujjuod samo] -do3 aeau Apues wmvccw s uMMHMMM“om o ausdoated
FIJULJ] JwWLS SUFWIUO) “LB[D SNVIIBUOQIED umolq pue ‘Aead-ysfuaaald ‘LAeuy 0s2-00¢ 1 N
‘eaae syydudp
u} pasn Jajes jo juadiad g 3noqe Jujk[ddns 1ajjnbe yedyoujiad puodas 082-012 (pues ,,31003-00%°‘1,,) i
‘83asua] e[ swos pue aIJudyy jo sjunowe Joujw ‘pues paujerd-unjpaw 03 -3ufy pues mOTTFd 3104 XO03[IM
‘pues A0[11d 3104 10 paq Jujug juod 13ddn pue pueg siydusy 0}
p2q 3ujujjuod 19m0] se $3a1dS§ -23FJuBj| awos pue sasua] pues paujeid co«umwmmm
-3u}J SUjBIUOI AJ[ed0] “AeB[D> SN03OEUOQIEd UmOIq Pue ‘Ae1d-ysjuaaid ‘Leiy 05€-091 PuElsl 14
rea1e syyduay uy
v a
pasn 13jem jo ucwuuww ¢ duyLijddns uajynbes poo8 K13y -aseq 3e A7[ed0f 088-00S (pues ,,3003-005..) au10qIern 2ua203 Lief3yaal
83Suaf pues 3Ieaeod !yaed 13mo] uy A11edo] paq Ley2 ¥oyyl -2a3IfudyIy jJoO pueg stydway
sjunowe 10ujw puk Le[D Jo sasua] ajeujpioqns ‘pues paujei8-2asie0d 03 -3UTJ
reale syydwsy jo 31ed ulaIseayinos uy Juasqy - pues syydusy (,Ler> Bupdded))
uy J3jem Jujjuod o3 pue AJjIjqeawiad A0[ JO aq 03 paiapfsucd AJ[eiau’dn dnoas 3uioqyel)d :
*8[13m A3pdeded-[jews ados 03 iaiem sajp]ddng  -a3jyudp[ pue pues pauyeald 0s€-0 jo 3aed iaaddn pue
-2U} ) }O Spaq IIEUFLIOYNS tAefd uel pue ‘AelBd-ysyuaaid ‘Lead-ysynpq ‘LAeis uojilewlog uosyder
*seale Ajunod> pue ueqangns uj s{{am L31jdeded
~-[Ieus ‘mo[[BYs sAuew o3 1aiem sajjddng -juasqe A[Tedo] aq Kew ‘ujerd au930t11d £1e1313]
lejaniye 1aary JddyssyssjW 3yl jo 3sed 37aq ielndaia} ‘peoaq e uy 001-0 (s3Fsodap 9de1191) pue pue
sealte pue[dn syl Say[iapu] ‘aUOISPUES SNOUT3NI113) loujw [aaeid pue pueg siysodap [ejanld 3u’201sTald L1eulajeny
*lajem '
~puno1d jo 23inos e JON *3ISEB3 3yl SpIvsol 1auupyy A{fesaua’d ‘ujerd
[vranie lanjy JAdpssyespy ayl dopiog 1Lyl 8$JIn[Q 3yl UO ISIAITYL $9-0 88207 QuUav018¥3aTd
‘unjanire ueyl 13y3jy L[[eoyydeslodoy ‘seaie pueldn uj sijsodap [ejanyy
3yl 13A0 3JIjque[q B Swioj -pues loujw pue Aeyd AITJS 3I[}S paljsodap-puim
*$380 [B[JISNPU} Bwos pue uoyIB3TaUT 10  12}em JO 3dinos
juejiodw} ue aq PINO) °‘ST[J9M [EFIISNPU] PuB DJISIWOp M3J B 03 Jajem Juacolstald
sap1ddns  -eaae 3y3 uj sweails 1ayjo jo sujejd poolj ayi pue ujerd SLT-0 unjAnT1y pue L1eulazen)
1eyanyie laapy yddyssyssyy oy3 sajaapuny ‘LKe[d pue ‘3I[Fs ‘[aaeid ‘pueg 2Ua’0[oH
T (393))
aduedyjjudye d13o10apAy pue L3010yl ssauxdIyy | 3pun oyydealdjaeiag dno1n ECR RN wais4g

*9DUBDTFTIUSTS DICOTOIPAY ITOY] Pue BaIe STYAWS[Y

oy3z Sutdrxepun s3tun DTS07098 ABMPTIN-1SO4--°¢ 9T1del

o~



", V-V OUTT 3JuOTe 1SBS 031 1SOM WOIF UO0T3D9S DTF0T0xpAyoal poziTelausn---z 2andry

6261 30 wnileQ TBOTIISA OTI9POd5 TRUOTIBN ST unjeq

SIINOS Oy 0 02 o O 0002

dnouig
AompIiN
- ~0061
—~000!
—-006
isjiun juadjpainba puo
puog siydwapy
aAd
l_oww.._ |
wnIAn|Y ,
_n_%_m\m,__Mm_z 39014 V
$S30| pubD syisodap 300443} glg SATTMOMND “
- 33SS3INN3L |SVSNVYHYEY —=00S




Sparta Sand; and in Mississippi, the Tallahatta Formation, Winona Sand,
Zilpha Clay, and Sparta Sand (Hosman and others, 1968). For the purposes
of this report, the Memphis Sand and its equivalent units in Arkansas and
Mississippi are herein called the Memphis Sand. In the area of Memphis,
the entire section of sand from the top of the Wilcox Group to the bottom
.of the 'capping clay" of the Jackson Formation and upper part of the -~
Claiborne Group constitutes a single aquifer hundreds of feet thick
(Hosman and others, 1968). Figure 3 is a generalized geohydrologic
section along the SW-NE trending line B-B' (fig. 1) that illustrates the
above-mentioned relation.

Precipitation, Runoff, and Recharge

Precipitation serves as the ultimate source of recharge to the
Memphis Sand. Mean annual precipitation is more than 48 inches per year
in the Memphis area, and most occurs during the winter and spring.
Droughts and low-flow conditions in streams are common during the late
summer and fall. Low-flow studies in the area (Gold, 1978) have indi-
cated that from 5 to 7 inches per year recharge the shallow aquifers where
they outcrop north and east of the study area; most of this follows a
fairly shallow ground-water path and reemerges as base flow of streams
during the drier parts of the year. A small percentage of this recharge
becomes part of the deep circulation pattern.

Hydrographs of wells tapping the Memphis Sand are characteristically
sinusoidal: high during periods of recharge in the winter and spring,
and low during the periods of greatest stress, during summer and fall.

On a long-temm basis, such as employed by the model, the effects of the
seasonal variations cancel each other leaving the general water-level
decline due to pumping as the dominant feature on the hydrograph.

Flow data from streams that drain the outcrop area of the Memphis
Sand suggest that, during most of the year, the Wolf and Loosahatchie
Rivers and Nonconnah Creek derive flow from ground-water discharge.
Total discharge including storm runoff averages about 20 inches per year
for these three streams. The upper Wolf, the upper Loosahatchie, and
Nonconnah above the confluence with Johns Creek, lose flow to the Memphis
Sand during the dry season at points along their reaches where the con-
fining beds are absent.

Shallow ground-water aquifers likewise interact with the Memphis
Sand in the area where it is confined. The confining beds that separate
the shallow aquifers from the Memphis Sand vary in thickness and perme-
ability (hydraulic conductivity). Where the confining beds are thinner
and more permeable and head conditions are favorable, a significant
amount of water may leak into or out of the Memphis Sand.

Water levels and water quality in the alluvium and Memphis Sand
directly west of Memphis in eastern Arkansas are consistent with water
being transmitted from the alluvium into the Memphis Sand. Likewise in
the Memphis metropolitan area, similar water-level responses in the
shallow terrace aquifers and the Memphis Sand suggest that leakage is
recharging the confined aquifer here as well.
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Discharge from the Memphis Sand into the alluvium occurs when head
is greater in the Memphis Sand than in the alluvium. The Memphis Sand is
thought to be discharging into the alluvium along much of the area where
Ehe Memghis Sand subcrops beneath the alluvium in Arkansas and Missouri

fig. 2).

BASIC MODELING CONCEPTS

The model of the Memphis Sand described in this report is based on
the numerical approximations of the two-dimensional differential equation
describing ground-water flow. The boundaries, aquifer properties, initial
conditions, and pumping are input to the equations, and resulting draw-
downs and heads are calculated. Adjustment of the input parameters in
the calibration phase of the study optimizes the response calculated by
the model to the response actually observed in the field. Split-sample
testing and a sensitivity analysis of the model as a final step verified
it as a tool capable of predicting water levels for pumping stresses
different from those for which it was developed.

From Pinder and Bredehoeft (1968), the equation for transient two-
dimensional flow of a homogeneous compressible fluid through a nonhomoge-
neous, anisotropic aquifer may be written as equation 1:

9k, 0 k), 9 dh,,9 0k _adh (1)
—(T +—(T +—(T =S5——+W %
Bx(‘m% é Bx(‘nfa K Ay ( ymax)+ay( yyay) 3t (@4, t)

in which

Txx, Txy, Tyx, Tyy are the components of the transmissivity
tensor (L%t-!);

h is hydraulic head (L);
S is the storage coefficient (dimensionless); and
W(x,y,t) is the volumetric flux of recharge or withdrawal per

unit surface area of the aquifer (Lt-!).

Considering only fluxes of (1) direct withdrawal of recharge, such
as well pumpage, well injection, or evapotranspiration, and (2) steady
leakage into or out of the aquifer through a confining layer or streambed,
then W(x,y,t) may be expressed as:

K
Wix,y,t) = Qx,y,t) - —=(H_ - h)

where Q is the rate of withdrawal (positive sign) or recharge
(negative sign), L/t;
K, is the vertical hydraulic conductivity of the confining layer
or streambed, L/t;
m is the thlckness of the confining layer or streambed; L; and
Hg is the hydraulic head in the source bed or stream, L.

11



In the simulation model, equation 1 is simplified by assuming that
the Cartesian coordinate axes x and y are alined with the principal com-
ponents of the transmissivity tensor, Txx and Tyy, giving

3k ; 9 dh)_5 dh_ 2
NG L. #2120 =5 SR (n, s t) (2)

An exact solution to equation 1 is not possible mathematically
because of the variable aquifer properties and variable boundary condi-
tions, but a numerical solution of high accuracy offers an alternative
that is practical for use on a digital computer. In this numerical
method, the aquifer system parameters and boundaries, which are contin-
uous in the field and are represented by equation 2, are replaced with a
set of discrete values for each of the parameters and for the bhoundary.
Determination of the values for these sets is accomplished by dividing
the area into small rectangular subareas by means of a orthogonal grid,
and taking the average value of each parameter in each block of the grid.

Equation 3 (Pinder and Bredehoeft, 1968) is the general form of the
numerical method into which the appropriate discrete values are substi-
tuted and solved for each block in the grid. The equation yields head
values calculated as finite-difference approximations to the continuous
derivatives at a point (the node at the center of the block). Input
values of appropriate hydrologic parameters represent average values for
the entire block. Equation 2 may be approximated by equation 3, which is
given as:

. R N N
TXX[7/ (]/2)3J] { (AX)Z)

F T 1i(1/2),4] [hi+1:j’k'hi:j:k}

(hx)?
(h “hs
+ T (2,d-(1/2)1 1,d-1,k 7/)J}k.l
xx b d / I (Ay)?* J
he -h- =
4 . L G4 (1/9 1,J+1,k %,J,k-l
Tyylis,d+(1/2)] _ h)? |
=5 h’Z:,j,k_h’l:,j,k—1
At J
+ (i, g) K

3 B . -h. .
- — | Hs kY 5 Jk—1 3
AxAy m [ (25 tsd } (3)
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where 7,7,k are indices in the x-, y-, and time-dimensions,
respectively;
Ax,Ay,At are increments in the x-, y-, and time-dimensions,
respectively; and
Qy is the volumetric rate of withdrawal or recharge at
the (¢,7) node, L3/t. .

A modified version of a computer program written and documented by
Trescott and others (1976) was used for the analysis of the Memphis Sand.
The Trescott, Pinder, and Larson model offers several solutional schemes
to solve the system of equations that results from writing a finite-
difference equation (equation 3) for each block in the grid. The strongly
implicit procedure (Stone, 1968) was used because of its computational
efficiency.

DEVELOPMENT OF THE MEMPHIS SAND GROUND-WATER MODEL

Conceptual Model

A conceptual model serves as the basic framework for developing a
digital ground-water model. The conceptual model possesses the signifi-
cant hydrologic features essential to define accurately ground-water flow
within an aquifer, yet at the same time it is much less complex than the
real aquifer.

The conceptual model of regional flow prior to pumping in the Memphis
Sand is shown in figure 4. Historical water-level maps were used to
determine original flow directions and to locate sources of recharge and
discharge (Hosman and others, 1968; Reed, 1972; Criner and Parks, 1976).
The regional flow system was characterized by movement from the outcrop
area of the aquifer in western Kentucky and Tennessee toward the axis of
the embayment and from there to areas of discharge. The initial dis-
charge areas were the area of the subcrop in Missouri and Arkansas, and
upward leakage where the overlying confining beds were thin and sandy.
Some flow is presumed to have continued across the southwestern boundary
of the model area.

Transient conditions associated with pumping are thought to have
dominated the system since 1886, when the first wells were drilled and
pumped. From 1886 to 1975 pumpage at Memphis had lowered the original
potentiometric surface by as much as 150 feet in the major pumping center
and reversed the original gradient, which was to the west (Criner and
Parks, 1976). Much of the flow that moved through the area toward natural
discharge points to the south and west before 1886 is now diverted and
captured by pumpage at Memphis.

Leakage to and from the Memphis Sand is thought to occur at locations
where head differences, confining bed thicknesses, and confining-bed per-
meabilities (hydraulic conductivities) are favorable. Leakage is assumed
to occur primarily through the upper confining layer (capping clay), and
three-dimensional modeling has confirmed this assumption. No accommoda-
tion was made in this model for leakage from the Flour Island Formation,
which is the lower confining layer to the Memphis Sand. Evidence for
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Boundaries of the model

The model is bounded on the north, east, and west by a representation
of the natural boundary of the Memphis Sand and the overlying confining
bed (fig. 5). The southern boundary has no geologic significance; it was
chosen because (1) it was greater than 50 miles from Memphis, and (2) its
position did not influence calculated water levels in the Memphis area.

The outcrop area of the Memphis Sand is represented in the model by
two conditions. For one condition, where major streams flow year-round
in the outcrop area, the corresponding block of the model grid is repre-
sented by a constant head. For the second condition, those blocks that
have intermittent streams or no streams are modeled as recharge zones with
constant flux. This flux represents precipitation that infiltrates and
recharges the aquifer. The constant head conditions of the streams in
nearby blocks divert excess recharge (representing base flow) and prevent
excessive head build up in the constant flux blocks.

In those blocks modeled with constant flux conditions, head may vary
with different pumping periods. This phenomenon has been observed in the
field in southeast Shelby County along the upper reaches of Nonconnah
Creek.

The outcrop area is modeled as an unconfined ground-water aquifer,
with storage coefficients in the range of 0.2. In locations near the
outcrop area where the upper confining bed is discontinuous, there is a
transitional zone of semiconfined conditions. Vertical leakage occurs
where the confining bed is thin or absent. The remainder of the aquifer
has confined ground-water conditions, and has been modeled as such.

The subcrop of the Memphis Sand beneath the alluvium along the
western boundary and also in the southeastern part of the area is modeled
as a zone of high leakage. This simulates natural recharge and discharge
between the Memphis Sand and overlying alluvium. At Crowleys Ridge, the
aquifer crops out and is recharged; blocks corresponding to this feature
are modeled as constant flux recharge.

The southern boundary of the Memphis Sand is modeled as a zone of
high leakage to simulate under flow out of the area. It should be
stressed that this boundary does not represent a physical boundary of the
aquifer, but rather it is an areal boundary beyond the range of effect of
any pumpage at Memphis. Choice of this boundary was necessitated by
economics and computer storage limitations; results from the modeling
computations indicate the representation is valid.

Aquifer (haracteristics Modeled

Data used in the model were derived from numerous published and
unpublished investigations made in the area (table 4). Because parts of
the area have been studied by different researchers, disagreement as to
the validity of certain data and conclusions exists. After evaluation,
these data were plotted and contoured on a base map of the study area.
The grid was superimposed and values were assigned by interpolation and
weighted mean methods for each grid block.
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The following parameters were input to the model as individual values
for each grid block:

(1) initial head - the altitude of the water level in the Memphis
Sand prior to pumping (1886),

(2) the storage coefficient of the aquifer,

(3) the transmissivity of the aquifer,

(4) the vertical hydraulic conductivity of the confining bed, and

# (5) the head in the unconfined aquifers or rivers overlying the
Memphis Sand,

(6) the thickness of the confining bed separating the unconfined
alluvial aquifer from the Memphis Sand,

(7) the recharge to the aquifer from precipitation, simulated by
constant flux cells and the discharge from the area, simulated
by leakage out, and

(8) the discharge from pumping.

Table 4 defines the source of these input data and the range for each
parameter used in the model.

Stresses on the System

Pumpage from the Memphis Sand began in 1886 when the Bohlen Huse Ice
Co. drilled a well in downtown Memphis. Since that time, pumpage from
the aquifer has occurred at varying rates and with a changing areal dis-
tribution of pumping centers. Because of variation with time, pumpage
data were introduced in the model in seven discrete pumping periods. The
modeled pumpage and the corresponding amount actually pumped for the seven
periods are shown in figure 7.

The pumping periods were based on abrupt changes in pumpage rates,
or variations in the areal distribution of pumping centers, and on avail-
ability of water-level maps. Pumping period duration, the historic
amount pumped, in millions of gallons per day, and the pumpage simulated
in the model are given in table 5. Variations between historic amount
pumped and modeled amount pumped are less than 1 percent of total pumpage
prior to 1965. Differences are due to round-off errors of simulated
pumpage for which the withdrawal location was not known.

Although the exact pumping location was not always known, the cen-
ters of pumping were fairly well defined. The unlocated pumpage was
assigned to nodes that fell within those pumping centers.

Actual pumpage generally increases throughout a pumping period,
whereas the model maintains a constant pumping rate throughout a pumping
period (fig. 7). The effect of different pumping rates may be observed
by plotting computed hydrographs showing all time steps with observed
hydrographs for selected wells in the area; the computed hydrographs show
the computed water-level trends as steeper than actually observed at the
beginning of the pumping period, and flatter than actually observed at
the end of the period. Because the pumping rate modeled represents an
average pumped during the interval, the rate for the model is greater
than actual at the start, and less than actual at the finish. The water
levels, however, should be similar at the end of a pumping period. Also
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Table 5.--Summary of historic and simulated pumpage, in millions of gallons
per day, used in the Memphis Sand ground-water model

Volume of simulated

Total pumpage for which
Pumping Dates of Historic simulated withdrawal location
period occurrence pumpage * pumpage was not known

I 1886-1924 30.29 30.61 8.0
IT 1925-1941 64.69 63.94 40.0
IT1 1942-1955 101.96 101.56 34.0
Iv 1956-1960 122.50 122.15 17.8
\Y 1961-1965 141.26 141.59 14.9
VI 1966-1970 161.10 161.10 15.0
VII 1971-1975 184.80 184.80 0

* Criner and Parks, 1976.
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important is the fact that both the model and the actual hydrologic sys-
tems tend toward an equilibrium, which is observed in a stabilization of
water-level trends after the abrupt initial decline.

Figure 8 shows calculated water levels at the end of pumping periods
superimposed on observed hydrographs of six selected observation wells-
(Criner and Parks, 1976).

Calibration of the Model

Calibration of the model is the process in which differences between
the observed and computed water levels are minimized by adjusting aquifer
hydraulic properties and boundary conditions. As Konikow (1976) has
pointed out, the large number of interrelated factors affecting ground-
water flow makes calibration a highly subjective procedure, but one that
can be simplified by evaluating the certainty of input parameters. Those
values that are confidently known are not adjusted, which reduces the
number of parameter combinations the modeler must evaluate.

Table 4 1lists the input parameters and summarizes the significant
features of each in the model. The parameter values used provide the
"best fit" of the computed values of the model to the water levels
observed in the field.

Initial calibration was conducted on a steady-state prepumping model
using the input values and boundary conditions described previously.
Water levels and ground-water discharge were computed and compared with
observed data, and hydrologically reasonable adjustments were made to
various parameters until an acceptable match of calculated and observed
data occurred. The most significant adjustments were made on the verti-
cal hydraulic conductivity of the confining bed separating the shallow
aquifers from the Memphis Sand and on the constant flux nodes that
simulated the recharging boundaries.

The results of the steady-state calibration are shown along with the
1886 water level as envisioned by Criner and Parks (1976) in figure 9.
Criner and Parks (1976) based their map on four control points, which are
simulated by the model within 5 feet. Part of the difference between the
water-level maps is ascribed to the fact that control in the area is
areally and temporally incomplete for water-level and pumping history.

An important result of the initial steady-state calibration was the
refinement of the conceptual model of flow in the aquifer. Initial runs
utilizing constant-head boundaries and the best estimate of aquifer
characteristics resulted in a calculated water level map similar to. that
presented by Criner and Parks (1976).

Calibration of the pumping periods I, II, V, and VI was undertaken
to refine the model further and test its ability to reproduce the
observed water-level configurations under transient conditions. Input
data that most nearly simulated Criner and Parks (1976) steady-state map
resulted in a poor simulation of transient conditions. Modifications to
input data were made in the same manner as for the steady-stage calibra-
tion until a best fit for the transient periods and steady state was
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determined for one unique, specific set of input data. Inasmuch as data
were sparse for the earlier pumping periods, more importance was attached
to calibration of pumping periods V and VI.

Because calibration periods were split into several discrete inter-
vals and not run as a continuous sequence, ohserved water level at the-
beginning of pumping period I and pumping period V were input. This had
the effect of splitting the sample into four parts: a calibration (I-1I),
followed by a verification (ITI-IV); and another original calibration
(V-VI), followed by a final verification (VII).

The two zones of low transmissivity (fig. 4), whose presence is
consistent with other hydrologic and geologic evidence, were located in
the calibration phase, as was a refinement in definition of the leaky
zones of the confining layer.

Figure 10 shows the results of pumping at the end of pumping period
VI, the final calibration period. Major features of the water-level
surface are generally well reproduced by the model, particularly the
asymmetric shape of the cone of depression in Memphis, details in the
cone at the major points of pumpage, the steep slope of the cone to the
west and the fairly flat potentiometric surface underlying the alluvium.
Table 6 shows the rates computed for major elements of the hydrologic
budget for pumping period VI (1966-1970).

More than 100 hydrologically possible configurations of aquifer
properties, pumpage, and recharge were run and evaluated. Calibration
runs that did not include high-leakage zones from parts of the Mississippi
alluvial aquifer and near the recharge areas east and south of Memphis
and the low-transmissivity zones as shown in the conceptual model did not
simulate the observed water-level measurements as well as those that
included these features.

Removal of the low-transmissivity zones shifted the effect of
simulated pumping to the west and tended to reduce the calculated
drawdown and diffuse it over a larger area. Exclusion of high leakage
zones in the alluvial plain to the west resulted in greater than observed
drawdowns during transient calculations and poorly matched water-level
configurations during both steady-state and transient simulation.

The calibration of this model involved matching calculated and
observed water levels with as many as 48 observation wells for a given
pumping period. Throughout the calibration phase, close simulation of
the observation well data was highest priority. In addition to these
discrete point matches, the general symmetry of the calculated water-
level surface was matched qualitatively to interpretive water-level maps
that were based on more extensive although unverified data.

Historic pumping and water-level data collected prior to 1960 were
commonly incomplete, and in some cases, were inaccurate. Calculations
based on these data made matching water levels from individual obser-
vation wells difficult. The overall "goodness-of-fit'" of calculated
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Table 6.--Generalized hydrologic budget computed by model
for pumping period VI (1966-1970) .

Millions of gallons

per day

Total pumpage from wells in Memphis

MEtropolitan are@ ..eiveeeeseeesnoennsoenaseanssnnns 164.1
Recharge - simulated by recharge

boundaries east and northeast

Of Study Grea .oeviniiurnerereeenernonnnsansecsnnsns 91.6
Vertical leakage to aquifer - primarily from

near outcrop area, Mississippi River alluvium,

and zones along upper reaches of Wolf and

Loosahatchie Rivers and Nonconnah Creek ............ 61.2
R o0} o ¥ T 11.3
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water levels to observed water levels, however, gave confidence in the
results calculated by the final model because it simulated conditions
quite closely.

Reliability of the Model

Testing of model reliability was accomplished by split-sample
testing. With this method, pumpage data, which were not used during any
aspect of the calibration phase, were run in the calibrated model. No
aquifer parameter changes were made during the verification. Water
levels calculated by the model were within the predetermined range of
accuracy of the water level as measured, and the model was judged
acceptable. The acceptable accuracy limit was simulation to within 5
feet for 75 percent of the observation wells.

The Memphis Sand model was verified using data from pumping periods
ITI, IV, and VII. The computed results of a single run from pumping
period VII are shown in figure 11.

The model was successful in reproducing the general water-level
configurations for pumping periods III and IV, and for qualitatively
simulating the major features and most of the details of pumping period
VII. Variations between the observed and calculated values of pumping
periods III and IV can be accounted for in part by the fact that exact
pumping locations for about 33 percent of total pumping were not known
and thus assigned to known well fields for period ITI, and about 15
percent were similarly assigned to period IV.

During pumping period VII the location of all pumpage was known, and
new heavy pumping began during this period. Because the new pumping
could not be considered in earlier calibration runs to help determine
recharge, the verification runs for this period did not meet the accuracy
standards. They were, however, close to those standards (71 percent).

The verification procedure addresses the question of model
capabilities and prediction reliability insofar as data exist, but it
does not specify the source or cause of error, defined as the difference
between calculated and observed data. In the Memphis Sand model, a
qualitative estimate of reliability has been assigned to the general
sources of error described below, and estimates for specific parameters
are provided in table 4.

Four general sources of error are common with models; these limit the
effect of the model as a predictive tool, and if not evaluated carefully,
commonly lead to misapplication of the model. The errors are: ‘

(1) poor choice and application of a numerical scheme to approximate
the flow equations;

and lack of accuracy or completeness in definition of:
(2) aquifer boundary simulation;

(3) aquifer hydraulic properties; and ‘
(4) historic records of stress (pumping) and response (water level).
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The Memphis Sand model used the SIP (strongly implicit procedure)
solutional scheme, which has successfully been applied to studies in
similar hydrologic terrains (Trescott and others, 1976). From the trans-
ferability of results from these similar studies, and from the evaluation
of the mass balance error of 0.01 or less on the final runs of the Memphis
Sand model, the numerical technique was not judged a major source of -~
error.

The fact that this two-dimensional model represents a three-
dimensional system probably accounts for error, but the magnitude is
difficult to assess. Where initial assumptions concerning vertical flow
are violated, errors will occur in the model. The three-dimensional
model would provide the magnitude of this source of error.

Aquifer boundary simulation in the Memphis Sand model, while
qualitatively correct, has not been defined by direct measurement.
Indirect methods, which include water budget analyses, comparison of
expected flow rates based on observed hydrologic characteristics and
responses, and extreme examples of no-flow and constant-head configura-
tions provide a range of possible flux across each boundary node.
Recharge rates were chosen from within this range.

Confidence in aquifer hydraulic properties of the Memphis Sand model
is variable areally for each of the different parameters. Table 4 con-
tains a summary of the overall confidence of the data that comprise each
parameter. All the input data are constrained by the requirement of
being hydrologically reasonable both with regard to absolute value and to
total range of values for the parameter. Error in the model due to poor
aquifer hydraulic property definition is not significant on a regional
scale, but could cause predicted water levels to be more than 10 feet in
error in small localized areas, based on previous model calculations
during calibration. A possible example would be a future large pumping
center proximate to presently unknown zones of low transmissivity.

Model Capability and Reliability in Predicting

This study, which utilized a split-sample analysis for calibration
and verification, suggests that the Memphis Sand model reliably simulated
water levels to within +5 feet for 75 percent of the observation wells
using a range of recharge values. The model is suitable for quantitative
prediction within the limits established by the calibration and verifi-
cation and within the range of maximum and minimum values of parameters
listed in table 4. The variations between calculated and observed water-
level changes are thought to result primarily from (1) simplification of
unknown aspects of a complex, nonhomogeneous hydrologic system, particu-
larly variable transmissivity, recharge, and leakage, and (2) incomplete
pumping records.

Continuing reassessment will be very important in the evolution of
the model. As ongoing studies fill the gaps in the data base and improve
our understanding of this complex flow system, the model can be modified
to include these changes. Newly developed techniques of aquifer-parameter
estimation would be particularly useful as an aid to understanding the
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system, as would development of a three-dimensional model, and an optimi-
zation model (Larson and others, 1977). The latter would be helpful in
evaluating placement of future well fields and pumping configurations.

Historic records of pumping stress and water-level response in
Memphis are more complete for the recent data. Unlocated pumping ranges
from more than 60 percent for pumping period II to essentially zero
percent for pumping period VII (table 5). Although ground-water with-
drawal during the first four pumping periods was areally restricted to
several specific pumping centers, the actual amount of pumping was
generally not known and had to be estimated. For that reason, more
emphasis was placed on the calibration of periods V and VI for which 90
percent or more of the pumpage locations were known.

The resulting response to pumpage may likewise be subject to error
and misrepresentation. Prepumping conditions are based on extrapolations
of early reported water levels. The maps presented are the best estimate
based on all the available data, but data from the older historic records
was sparse until the 1940's, during pumping period III. This was used as
further justification to attach more importance to calibration of periods
V and VI.

Although these potential sources of error may appear significant in

a conservative evaluation of limitations, in actual application their
combined effect has been minor. The calibration phase, particularly
pumping period VI, showed that the model simulated the major components
of the flow system of the Memphis Sand. Likewise, more than 100 varia-
tions of the calibration exercise confirmed that alternative configura-
tions were poorer than the final model in simulating not only pumping
periods V and VI, but the entire pumping record.

Significant changes introduced by resource development may render
the present model inaccurate. Monitoring the study area so that impor-
tant changes to the aquifer system can be programmed into the model will
help maintain its accuracy. Development of new stresses or changing
boundary conditions caused by pumping, lignite or other mineral mining,
or changing land use could have a considerable effect at Memphis.

Sensitivity of Input Parameters

By varying one parameter and holding all others constant, it is
possible to observe the relative sensitivity of the model to different
input parameters. A column summarizing the sensitivity of each input
parameter is given in table 4, and sections showing Criner and Parks'
(1976) interpretation of the observed water level, and water levels
calculated using a range of selected input values for single parameters
are shown in figure 12.

Vertical hydraulic conductivity of the confining bed, pumpage, and
transmissivity appear to be the most sensitive parameters; vertical
hydraulic conductivity of the confining bed, and boundary fluxes are the
parameters for which the least data exist. The sensitivities of leakage
and transmissivity provide a fairly narrow range of acceptable input
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values for the parameters, but boundary fluxes are relatively uncon-
strained because most of the observation wells are far removed from the
recharge area. The total mass input must be equal to a specified amount,
but this can be accommodated by innumerable recharge configurations. The
choice of recharge from the input cells was determined to provide the
best compromise between efficiency and accuracy.

SUMMARY AND CONCLUSIONS

A digital model simulating ground-water flow in the Memphis Sand was
constructed, tested, and found to simulate historic water levels for the
Memphis metropolitan area and found to be within 5 feet of observed for
75 percent of the control points. The model is based on the two-
dimensional Trescott-Pinder-Larson (1976) model using the SIP algorithm
and pumping periods ranging from 5 to 39 years; the model has been used
successfully in other areas of similar hydrologic setting.

Pumping and water-level data were split into two samples, one which
was used to develop and adjust the model, and the other which was retained
and used only as a final test of the model. This testing verified that
the model could reproduce water levels for pumping configurations other
than those for which it was developed. A sensitivity analysis of input
parameters increased confidence that the model could predict water-level
responses.

Use of the model for predictive purposes has been simplified to an
essentially one-step process for the individual utilizing the model.
Projected pumpage configurations and durations are located within the
model grid, coded, and entered. The output from the model is a printed
tabulation of water levels and flux calculations, and a contoured map
showing the water-levels that would be expected from the specified

pumping.

The construction of the model of the Memphis Sand provides not only
a tool that will aid in evaluating the capabilities of the aquifer and in
predicting responses to management alternatives of this aquifer, but also
provides much insight into the flow system of the aquifer in the Memphis
area.

Specifically, the regional homogeneity of transmissivity initially
ascribed to the aquifer did not suitably simulate observed water levels.
Several narrow zones of lower transmissivity, some as much as one order
of magnitude less, were determined during the calibration phase to provide
the best overall calculated response. These zones, which closely match
the locations of fault zones hypothesized by Fisk (1944), Criner and
others (1964), and A. Zurawski, U.S. Geological Survey (oral commun.,
1978) appear to restrict flow between the aquifer in the Memphis area and
to the west in Arkansas.

Placement of these zones of less transmissivity is also consistent
with water quality differences observed in the aquifer (Plebuch, 1961;
Criner and others, 1964; Halberg and Reed, 1964; Moore, 1965) and water-
level variations (Halberg and Reed, 1964; Criner and Parks, 1976).
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Figures 9, 10, and 11 show water-levels in the areas of restricted flow.
Observed geometries in these diagrams are consistent with restriction of
flow in the aquifer between western Tennessee and eastern Arkansas.

Comparing observed with calculated water levels also indicated that
the inclusion of leakage along the upper reaches of Wolf and Loosahatchie
Rivers, Nonconnah Creek, and the Mississippi River alluvium provided the
closest - simulation of observed water levels. Electric logs from these
suspected zones of leakage commonly show thinning of confining clays or
more sandy zones within the confining layer. Approximately 15 percent of
the total leakage shown in the water budget in table 6 occurs near the
subcrop area where the confining bed is thin, or in the western part of
the study area where streams have breached the confining clay.

Resolving the intricacies of interaquifer movement of ground water
between the Memphis Sand, the alluvium, and the Wilcox Group aquifers
will require a three-dimensional model, as will any water-quality models,
and any newly developed studies to evaluate total resource management
alternatives. Parameter-estimation techniques (Cooley, 1977) should be
helpful in quantitative studies of the hydrology of the area. An
existing optimization model developed by Larson and others (1977) offers
an attractive approach to evaluating placement of future well fields and
pumping configurations.
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At tachment I

TECHNICAL DESCRIPTION OF GENERALIZED TWO-DIMENSIONAL DIGITAL
MODEL FROM WHICH THE MODEL OF THE MEMPHIS SAND WAS DERIVED

The digital ground-water model presented in this report is based on
the model developed by Trescott, Pinder, and Larson (1976) that has been
used successfully to simulate a variety of aquifer systems in two
dimensions. This report by Trescott, Pinder, and Larson (1976) provides
a cogent description of the theory and capabilities of the generalized
model, as well as giving detailed instruction in the general use and
application of the model, and documentation of the model. Included in
the documentation are flow charts, complete program listing, example
simulations, and alternative data output techniques to the printout of
calculations and contoured map generated by the Memphis Sand model.

Used in conjuction with Attachment II, the documentation in the
Trescott, Pinder, Larson (1976) report will provide the practical basis
for full utilization, including troubleshooting, of the model of the
Memphis Sand.
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Attachment II

INSTRUCTIONS AND EXAMPLES FOR CARD INPUT -
GROUND-WATER MODEL OF THE MEMPHIS SAND

The digital model of the Memphis Sand has been simplified to .
facilitate use by personnel inexperienced in computer modeling. Although
the Memphis Sand model follows the same format as described on pages
49-55 of Trescott, Pinder, and Larson (1976), most data are stored on the
U.S. Geological Survey computer in Reston, Va., and do not need to be
reentered.

Only the title, simulation options, problem dimensions, and parame-
ters that change with the pumping period will require encoding and entry
into the general Memphis Sand ground-water model. Other job control
language and parameter cards will not change, and these are described at
the back of Attachment II.

A flow chart (fig. 13) shows the sequential steps necessary for
running the model. The sequence is defined in greater detail below:

1. Code Title -- Code any title that identifies the individual run in
120 spaces or less; 80 spaces on the first card, 40 spaces on the
second card. Always include two cards; leave the last 40 spaces on
the second card blank.

2. If simulation of more than one pumping period is desired, change
variable NPER (group II, card 2, columns 9-10) to 7 plus the number
of pumping periods simulated. Otherwise, leave NPER = 8. Note that
this number should match the highest number given for variable KP
(group IV, card 1, column 9-10).

3. Define Pumpage -- Locate pumping centers on base map by alining grid
overlay of same scale. Grid location should be given by row (down)
in card space 9-10, by column (across) in card space 19-20, and
pumpage, in units of negative feet per second in columns 21-30. Row
and column are integer numbers, and pumpage is a decimal. All
numbers should be right justified in their fields. Pumpage can be
converted from millions of gallons per day to negative feet per
second by multiplying the value in millions of gallons per day times
(-1.547). If pumpage falls between two or more nodes, it should be
divided proportionally between the nodes.

4. Define Pumping Period Duration -- The number of the pumping period
should be coded in card space 9-10. Most simulations will use 8,
because 7 were used in modeling through 1975. For simulations run
with the model, the following pumping period designations were used.
It is not necessary to conform to these, but other variations should

be noted.
Pumping period Interval
8 1976-1980
9 1981-1990
10 1991-2000
11 2001-2025
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Figure 13.--Flow chart for operating the Memphis Sand digital ground-water model.
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10.
11.

12.

13.
14.
15.

In card space 19-20, code 1 minus the value you have in columns
9-10. For example, if pumping period 8 were shown in card space 10,
then (8-1) or 7 would be shown in space 20. In card spaces 28-30,
show the total number of nodes in which pumping and recharge will
occur during this period (count them on the grid). Right justify the
number in the field. Right justified in card space 31-40, show the
number of days the wells will be pumped. Days = 365 x number of
years. Code 100 into spaces 48-50. Code 1.5 into spaces 58-60.
Right justified into spaces 61-70, code the value = (number of days
in period x 24)/170. This completes the pumping header card. This
card, when punched, goes in front of the group of pumpage and
recharge cards completed in step 3. For each pumping period a new
set of pumpage (step 4) data by nodes preceded by a pumping period
duration card (step 5) is required. Multiple periods should be
placed directly in back of the preceding pumping period.

. Code, keypunch, list on printer, and verify, -- check input values

carefully; errors here are magnified in the program.

. After inserting these data in the deck described in the attached

listing (p. 69), this deck is now ready to be run on the USGS 370-195
computer in Reston, Va.

. Run the program.

. Upon successful completion, a printed record of the calculations will

be received.

. In addition, the card punch at the terminal will receive punched

output which will be used to draw the water-level contour map.
Initiate communications with USCE INFPNET computing facility.

Read punched output or tape of card images into file RDO2 on
INF@NET.

Run SPL@T on INFPNET. This is an interactive program that asks
questions about map scales, titles, and plotting information.

Output from SPLYT will be a plot tape.

Have the tape plotted on CALOJMP plotter.

Output is a water-level map on paper or mylar contoured to the scale
of the specified base (generally 1:10416). This represents the

resulting water level in the Memphis Sand from pumping the
configuration previously input in step 3.
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Attachment III

Observed and computed water levels for selected wells in the
Memphis Sand under transient pumping conditions

[Datum is National Geodetic Vertical Datum of 1929]

Observed altitude

of water level Calculated altitude
(feet) of water level
Aug.  Sept. Aug. (feet)
Grid location 1960 1970 1975 1960 1970 1975
22-23 276 275 277 277 275 275
49-15/16 188 180 180 188 180
50-20 200 190 184 197 197 189
46-19/20 139 140
44-17 159 158
44/45-17 158 155
43/44-19/20 144 145
43/44-18/19 146 144
47-17 173 171
47/48-18/19 157 178
46/47-18/19 163 158
48-22 181 180
Sh:J-102 45-20 130 99 124 130 104 87
Sh:J-110 45/46-21 145 123 129 150 128 120
Sh:J-126 46-20/21 151 122 135 147 139 132
Sh:J-140 50-17 188 171 188 171
Sh:K-4 44/45-25/26 211 192 209 189
Sh:K-13 43/44-22/23 171 172
Sh :K-15 43/44-23/24 184 183
Sh:K-20 43-22 170 153 155 171 148 135
Sh:K-23 39/40-25/26 190 186 197 186
Sh:K-25 43-25/26 201 261
Sh:K-28 48-25 211 213
Sh:K-29 46/47-23/24 199 197
Sh:K-31 45-28 220 215 212 203
Sh:K-66 39/40-24 166 159 145 175 164 154
Sh:K-74 42/43-25 178 184
Sh:L-1 42/43-29 241 243
Sh:L-10 38-30 253 243 239 253 235 231
Sh:L-13 42-28 208 200 207 198
Sh:L-15 37-32 266 260 258 264 260 261
Sh:L-20 39/40-27 230 228
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Attachment III

Observed and computed water levels for selected wells in the
Memphis Sand under transient pumping conditions--Continued

Observed altitude

of water level Calculated altitude
(feet) of water level

Well Aug. Sept. Aug. (feet)
no. Grid location 1960 1970 1975 1960 1970 1975
Sh:L-24 43/44-28/29 238 237
Sh:L-39 43/44-30 245 216 208 248 221 218
Sh:L-43 44-30/31 249 230 222 251 232 227
Sh:L-54 38/39-32/33 264 263 266 268
Sh:L-64 38/39-26/27 225 212 211 222 201 195
Sh:0-1 34/35-14/15 184 174 174 179 178 175
Sh:0-41 38/39-16/17 133 126 126 138 128 130
Sh:0-98 42/43-16/17 140 142 156 145
Sh:0-110 39/40-16/17 131 133
Sh:0-115 37/38-14/15 161 157 157 162 159 152
Sh:0-124 41-16/17 - 158 159 160 165 154 142
Sh:0-153 40/41-18/19 130 134
Sh:0-179 39/40-16/17 124 127 88 133 127 127
Sh:0-212 40/41-18 105 103
Sh:P-1 32-22/23 205 190 188 206 191 184
Sh:P-8 37-20/21 144 144 141 148 141 145
Sh:P-12 37/38-21 143 148
Sh :P-37 36/37-21/22 162 157 165 153
Sh:P-50 38/39-18/19 145 144
Sh:P-54 38/39-21 154 151
Sh:P-61 40/41-22/23 168 157 168 153
Sh:P-69 34/35-21/22 170 176
Sh:P-74 36/37-25 202 190 203 191
Sh:P-75 33/34-21/22 193 193
Sh:P-76 41/42-21 163 149 148 162 141 129
Sh:P-85 34/35-24/25 200 183 182 201 188 184
Sh:P-96 30/31-22/23 201 198 201 193
Sh:P-97 39/40-19/20 131 116
Sh:Q-1 34-28/29 243 233 231 245 231 ' 229
Sh:Q-3 31/32-30 257 249 249 255 247 246
Sh:Q-9 35/36-16 210 210 206 201
Sh:Q-21 32-25 217 219
Sh:Q-23 33-24/25 209 184 188 212 190 180
Sh:Q-24 31-24 220 211 222 203
Sh:Q-53 34-25 181 182
Sh:Q-59 33-25 168 178
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Attachment IIIL

Observed and computed water levels for selected wells in the
Memphis Sand under transient pumping conditions--Continued

Observed altitude

of water level Calculated altitude
(feet) of water level

Well Aug.  Sept. Aug. (feet)
no. Grid location 1960 1970 1975 1960 1970 1975
Sh:R-15 27-32 27 273
Sh:T-17 32/33-12 192 192 195 193
Sh:U-2 27-14 221 214 214 219 211 207
Sh:U-11 26-17/18 223 213 212 223 214 210
Sh:U-13 31/32-15/16 157 170
Sh:U-15 31/32-15/16 168 178
Sh:U-22 30-15/16 199 197
Sh:U-23 30-15/16 186 187 188 179
Sh:U-25 30/31-16/17 187 183 187 180
Sh:V-1 26-26 246 244
Sh:V-7 27/28-26/27 246 242 240 245 237 234
Sh:W-3 24/25-30 258 258 260 259 262 262
AR-1 45/46-12 186 183 188 188
MS-1 47/28-32/33 263 256 254 262 258 256
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ATTACHMENT IV
PROJECTIONS OF WATER USE

Future pumping demands are required input if the model is to be used
for predictions of future water levels. Because water-use projection is
affected by many variables, most of which are outside the domaine of the
U.S. Geological Survey, it was decided to chose a range of values -
maximum, intermediate, and minimum - that would bracket the probable
pumpage and define its limits. These projected demands are summarized in
table 7 by major use and figure 14 by major well field. The pumping
demands are bhased on extrapolation of information provided by MLGW, and
represent a ''best estimate' at this time. They include the time period
from 1980 to 2025.

Maximum conditions are based on the ultimate design capability of
the MLGW distribution system for each municipal well field, as well as
inclusion of all planned withdrawal demands for projects that have been
proposed. Self-supplied industrial pumpage, industries that use their
own wells, has remained relatively constant since about 1950, and on the
basis of little variation during the last 30 years, it was assumed that
all new industrial pumpage would be accommodated by MLGN. Pumping
demands for existing self-supplied industries were projected as 20
percent greater than 1980 figures. Calculation of the maximum conditions
yields a conservative pumping figure that is felt to be an extreme upper
limit of ground-water use.

The intermediate pumpage figures are based on extrapolations of MLGYW
projections. These values are taken as one hypothetical situation only
and were determined to show water-level effects in the middle of the range
between maximum and minimum. No increase was assumed in self-supplied
industrial pumpage.

Minimum pumpage was arbitrarily selected as the smaller of (a) the
minimum 5 year demand that stabilized for each well field during the last
30 years or (b) the projected MLGN pumpage reduced by a factor of
40 percent.
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Table 7.--Projection of maximum, intermediate, and minimum pumpage

for three periods, in millions of gallons per day, from 1981 to 2025

MLGW Time Pumpage projection
well field period Maximim Intermediate Minimum
Allen 1981-1990 25.49 22.08 15700
1991-2000 29.55 23.85 15.00
2001-2025 33.80 25.34 15.00
Airport 1981-1990 10.97 6.49 3.80
1991-2000 14.48 12.99 4.60
2001-2025 15.00 14.74 5.00
Davis 1981-1990 22.20 17.32 10.00
1991-2000 28.30 21.74 10.00
2001-2025 30.00 27.35 10.00
Lichterman 1981-1990 27.46 25.91 19.52
1991-2000 30.00 29.21 20.92
2001-2025 30.00 30.00 22.48
Mallory 1981-1990 25.06 21.78 13.00
1991-2000 29.72 23.94 13.00
2001-2025 34.09 26.60 13.00
McCord 1981-1990 26.75 23.75 18.00
1991-2000 28.00 26.79 18.00
2001-2025 28.00 28.00 18.00
Morton 1981-1990 19.76 13.38 4.38
1991-2000 28.26 21.27 9.99
2001-2025 30.00 28.53 16.25
Sheahan 1981-1990 29.55 25.20 15.00
1991-2000 34.10 28.99 15.00
2001-2025 35.00 33.62 15.00
Municipal 1981-1990 187.24 155.91 98.70
pumpage 1991-2000 222.41 188.78 106.51
(Subtotal) 2001-2025 235.89 214.18 114.73
Industrial 1981-1990 75.00 74.00 72.5
pumpage 1991-2000 80.00 76.00 72.5
2001-2025 87.00 80.00 ' 72.5
Municipalities 1981-1990 10.00 9.00 8.21
(outside MLGN) 1991-2000 12.00 10.00 8.21
pumpage 2001-2025 15.00 12.00 8.21
Total pumpage 1981-1990 272.24 238.91 179.41
1991 -2000 314.41 274.78 187.22
2001-2025 337.89 306.18 195.44
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ATTACHMENT V
Selected Input Parameters

The input to the computer model is included in a 58 by 44 matrix for
the following parameters:

transmissivity,

head in the overlying aquifer,

thickness of the confining layer, and

. vertical hydraulic conductivity of the confining layer.

S N o~
o e e

Each entry in a matrix represents the coded value of the appropriate
parameter at the row and column location shown.
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IWRRRB
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BRCRB
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B3B8
BHHBE
BB HBH
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BH8uY
BBBbBY
BBBBR
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BdBgA
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BoB8&bB
B3B8y
BBXBH,
BBRBY
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tB8Bub
BRYBA
BBBBY

BBHA

BbBBA
BBHBSH
BpB8BBA
BEBBA
8BRR

RBREB
BEBRY|
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B8B8Y
BBRBY
BHEBY
BBRBB
BuRBY
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RBBHR
RBBBH
RBBBA
BrBBR
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AAAA
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AAAAA
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AAAA
AAAA
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AAAA
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RFFFF
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BFFFF
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BBBBA
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bB8BBH
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BbBBq
BBBB
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BBy

SHAAA
RBBAA
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BBBAA
BbBAA

AAAA
AAAA
AAAA
AAAA
AAALQ

AAARR
hAAPH
AAARR
AAAHH
AAARR

SFFEF
RRBRF]
HRBEF
BRERAB
BRBBF

B8HAY,
B3488
BBHBY|
BBBHY
EeCCH

BEBb
BRHBY
B8888
BRBYE
HB8BYY

RBBBH
HBHE Y
RBBRE
BBB8HA
BBBBA

B3R
HBRR
BB3Ch,
HBRB
BE3RY|

Bb388
BRRBHE
BBRBA
HBBH8 A
BBRH A

HEBAAA
AAAAA
AAAAA
AAAAA
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAARRA
AAAHS
AAAR
AAAH
AAARR

BRIRF
BRERY
BR3AF
BRBFF
BIBFF|

FFFB8
FFFBY
FFFFF|
FFFFY
FFFFF

HRBUF]
HBCCF]
BEBBH
BBBBY
BRBBH

FFFFF
sBBBR
BBBAA
BuBBA
CuBBR

FFFFF
BBRARB
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BBRRB
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AAAAA
AAAAA
AAAAA
AAAAA
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AAAA
BAAA
AAAA
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AAAA

AAARR
AAAYR
AAARR
AAARH
AAAYIR
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BFFFF
BFFFF

FFFFF
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BBHBY

FRBBY
HBBBB
BBBB1
BRBBA
BBBBH

118BH
11888
BIBBR
BBBBR
BHEBA

BBRBA
BEB38
B8BBRB
RBRBA
BBCBH

BERBY
BBCBY
BCCCB
5388
8RBy

AAAAA
RAAAA
RAAAA
BAAAA
BAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAASR
ABARR
AAAWT
IVGLED
AARHR

SFFFF
BFFFF
BF FFF|
BFFFF|
BFFFF]

EEELEL
FFrBY
FFFFF
FFFFF
FFFFF

HBEBBE
RBHBH
BBB8H

+BBBH
FFBB8

B88BH
BBBBA
BBB8RHB
BBBRBH
B888R

BRRARY|
B3B8RBBH
838888

BBRBd|
B8BRA

BERBY)
BuBRBH
BUARBL
53R88
BE5RB

BAAAA
HAAAN
HAAAA
AAAAA
AAAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AABTIR]
AARCR]
AABHA
AARYR
AAFH-4R

BRBRB
RR3AY
BRBBY
BRBAE
BRBAR

BBRBHE
BBHKH
BB Y,
B8588
Bd3RY

BB
HBBBY
RRBBY

BHBBY
BRBBA

BB3BH
HBHBBAR
BoBBR
HBERA
BBBHH

BBBRY
BBRAK
SB3KBYH

BBBKY
HB8H 3

B33B8
BBYHA
BB3AA
BBYAA
BHBAA

AAAAAQ
AAAAA

AAAAA
AARAA

AAAA
AAAA

AAAAAAAAA

AAAA
AAAA

ARRAR
ANNUN

HRBRY|
INNNNN

AABI%

AAAAA

BBBBE
NNNNW

BHBBY

AAAAA

NNNNm
AAAA

BbBHH
INNNNN

BBBRY
INNAN M

B8RBY
NEAAﬂ

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

AAAAAAAAA

AAAA
AAAA
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Code

OZZ=Ru-HITOTmMmIoQw >

EXPLANATION

Vertical hydraulic conductivity

of confining bed

(x 10-°
0
>0 and
>1.7 and
>3.4 and
>5.2 and
>6.9 and
>13.8 and
>20.7 and
>27.6 and
>34.5 and
>41.4 and
>48.3 and
>55.2 and
>62.1 and
>69

ft/d)

<1.7
<3.4
<5.2
<6.9
<13.8
<20.7
<27.6
<34.5
<41.4
<48.3
<55.2
.1

A A
0 N
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Parameter:

AANANA
AAAAA

AAANAA

AAAAA
AAAADA

layer

5 10
AaAAARAAA

AAAFFDDGED]
ABFFDDGED
AABFGHHTIL
ARKMMMMP PP

Column (7)

15 2

AAAAA
EEFFF
EEFFF
KK ITT
OONML,

0 25

IAAAAA
FEFFI
FEFFI
1HHGG
LLJUKJ

30

AAAAAMAAAAA

HITIGHGGAA
HIIIGHULOEER

35

[AAAAA

AAAAA
EAAAA

HIJIAHGONFHIBAAA
JITTIHFGHHKUBAA

Thickness of the confining
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NAAA
aaAA
AAAA
WAAA
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AAAAA
AAAAA
AAAAA
AAAAA

ARMMONURRR
BKMNNRKKRR

PP NNM

qQONNOOOKJJ
BKMNNRRRRNOLMLL
BrKMMNORQOOMMLLLUKKKAM
B KLMNKP ONMMMLL L

MNLTT
KKKKL

L KKML

MJJHUAGGGIGF FBAA
I THHGFFFGGGBAA
KJJKIGHHGHGHBAA
LMLLKUIGGHGOBAA
KRKLKJJIHJJITTEBA

AAAA
AAAA
ADNAA
AAAA
AAAA

aAAAABLUMMNP OLMMNMMNOUMLK
BLLMNNNRRRPONNMUNUML

AAAAA
AAALA
AAADA
AAAMNA

BLLLMNPRRP)
BLLLMNNNNM
BLMMNNNNNN

PPRPN
MMMMM
MPOON

MMOMK|
MLLLM
LLLLL

KKIKKIRRFF

MJTUK

IFFBA

KJTJIKKIHOHOEB A
KHGHHF EEBA
LMMLLKKTHGF URAA
LMMMUTJIHHFFBAA

AAAA
AAAA
AAAA
AAAA
AAAA

AABAA
AAAAB
AANAR
AAA AR
AAAAR

BLMMNNNNNN

KLMNMNMMO?
KMMMNMNMN

0QPPK

UL MMNINNNNOINRRRRRRKQR)
KKLMNNMMNPUP OOVQKRRQ)

OOMLL
INNNN

REMML|

LLLKK
OMMON

KJKLLUJKJTF]

JIJIHJIHEE
MMM [ HOF FE L)

FFBAA

UMKKKIKKJ T 0iGFBA g
IOMMMKIKJ ITHGIGHB A A

DCAAA
FDAAN

AAAA
AAAA
AAAA
AAAA
AAAA

AdAAR
AAANR
AAAAR
AAAR
AAAR.J

L MNNNNMNRR
LMNNONNPOU)
LMNOONKRRK

GRAPUPPUPM
MNP OOOUNLK
REQQPIQPNML
LMNOONURQPIQQAUH
LNNONNGRNNNMNNN

INLKLL
MLKKJ

PLLJNHAGGD
IMJJGGGFEC]
KKHGOF £ECC
JIHFFEEECD
[IFFEFOGGE

FEAAA
REAAA
ICEAAQ
FEAAA
EAAA

ADKA
AAAA
W AAA
AAAA
AAAA

AAARY
NAARY
aAARY
ABAY
AAA~K

MNNONNGPOM
MNOONNKNMM
MNONNOKPMM
NNONNNFPNMM
NMONOMPNL M

MLLLL
LKLKL
MMMLK
MMLKJ
MLKJJ

KKJKT
KJIIG
M ITHHH
MIJJJ
UJJJJ

LOHGGF VDDD
GGG IHONFEL
IGIJUHHOFFE
HJLK [IGPGFE
NTJIFPHFEE

NEAAA
FCAAA
ECAAA
FaaAa
FAAAA

AAAA
nAAAQ
AAAA
DAAA
LAAA

LYY BN
AAAKK
AAARK
AAAHK
AAA3K

INNONNNF MM
UOONNMUOKK
OOONNMNNL K
00 ONNMMML K
00 ONNMLMKK

L JKKK
KJLKL]
LLLKL
MLMMM
MMMKL|

KLKJY
LLKJI
LKJII
KJIHI]
JHHHG

HG [HFNUDC
HHHHOMME B A
GGHHGMMDB A
GGGGFMMGB A
HHGFFEEDB A

A AAAA
AAAANAL
AAAAA
AAAAA
AAAAA

AAAA
AAAA
AAAA
IWAAA
AAAA

AAARK
AAARK
AAAHK
AAARK
A A ARK

NOUNNMLLKK
INPONNML JLK
NOUNNML UK T
MOONNMLKK I
MOONMML KKK

LLJI
JIJJ

KJJKJ
KKKJJ

UJIVJITIJIT

IHHHQG
1 IHHH

JUITI
JITII

FENDDDLDBA
HGFFFIFEEBA
HGGGULFEBA
IHHFGGFEBA
HFEFFIEBUBA

AAAAA
AAAAAQ
AAAAN
AAAAAQ
AAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAARK
AQMARK
A A LRK
AAA3K
AAARK

MOONMMLKJI
MOONMML KK I

INONNMML KK J
NONNMMLKJ]

KK JKK
MKJKY

MOPNMML KKJKKLLK

uMML J
KLLKI

KJJIH
JJJIG
JJJHF
JUIGF
1JGGH

HFEEEFEDCH
F GF GEEEEDC

HGFFGGGGFU
HHGGGF FGFD

AAAAA
BAAAA

GGF GOF FGFDBAAAA

K AAAA
RAAAA

AAAA
AAAA
AAAA
AARA
AAAA

AAARK
AAARK
AAMARL
AARLL
Aapt L

INOINNML KK JK|

IOPNNMLKKJJ

INPNNMLLKJJUKKKJ [

JJITI

INONNML LK JUK JKKIJJIJJ Y
NONNML LK JJJKKKJIKJJJ
TLKKJJJIIT J

HHGH I
IHHHI

JIHOLGF GGEC

KJIHGF GGEE
K IHHGF GGEE
JIHHGF HGE Y

BAAAA

KJIHFFGGEERAAAA

BAAAA
AAAAA
AAAAA

AAAA
ANAA
AAAA
AAAA
AAAA

AAKHAM
AABMM
NARJN

AMABKM
AARKQY

UPMNML KK JJ|
OPMMMLK JJJ;
PPMMULKJJ ]
PPOMLILKJJIL
RPUMLUL K JJL

MLLL
JJIIH
I HHHH

1 IHAH
L IHHH

11JHI
111+
HIIIH
HGOGF
HGGGF

W IHHGF ADBY
HGGFEEULDRA
GGGFFEUCAA
EEDNCCBRAA
EEODDCCBHAA

AAAA AN
AAAAA
AAAAA
AAAAA
AWAAAA

AAAA
ADNAA
AAAA
AAAA
AAAN

nHMOR
AABHR
AAAAN

RQUOMMLL KK
RPPONNMLLL
AAAANAAAQA

YNNI
LKKJJ
haaaA

THHHH
MJIHH

GFEDCPOCBA
HOGGFFFEED

AAAAA

AAAAAAAQAA

AAAAA
DAAAA

AAAA
AAAA

AAAAA

AAAA
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Code Thickness of confining bed

TOWOZIZ~"Ru—-IToOTHmonw >

EXPLANATION

>0
>25
>50
>75
>100
>125
>150
>175
>200
>225
>250
>275
>300
>325
>350
>375
>400

(feet)
0

and <25
and <50
and <75
and <100
and <125
and <150
and <175
and <200
and <225
and <250
and <275
and <300
and <325
and <350
and <375
and 400
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AAANA
AMALA
AANDA
AAAnA
AAADA

MAAAAAAAAA
MAAQRRRRRR
A AP QRKRRRK
AAPPOPPRRR
WOOOOVPURRR

: Head in the overlying
aquifer

Col

5 2

KRAAAA
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umn (j)

0 25

AAAAAIAAAAA
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30 35
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HRRAAAAAAA
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LY.V ¥
AAAAA
ABMAQA
AAAQD
AAAAD

ANPPPRRKRR
NNOOPIRRRR
NMNP P URRR
AMNNOP UKRK
MMMNNIOPQOU

RRKR
RRRRR
ROOGQ
LQPPQ
PPPQQ

RRRQRRRRRK
KRRRWQRRRRR

LUQANRRRRK|
BQURRRKRRRK
RRHKRRRRRK

HRRRRRRRAA
RRRRRRRRAA
RERRHRRRAA
RRRRRRRRAA
HRKRHRRRRA

AAAA
WAAA
AAAA
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AAAA

AAAAA
AAABA
AAAAA
AAAAA
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MMMMMMP NOO
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LLLLLALLLM
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PQQWQ
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RRKRRRRR KK
LQOWURRIRRRRK

NNNPPIUQARK
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NNNNOUOOOPP

RRRHKRKRKR A
HRRRHERRRR A
PRRRR]RRRRA]
KPPQURRRA 4
QAQQIRRRA A

AAAA
AAAA
AAAA
AAAA
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AAAAA
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AAAAY
LYY R
AAAAT
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IKJJIKJ T HMM
TUTUHIJIML
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INNNNIN
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AAAA
AAAA
AAAA
AAAA
AAAA

AAABT
IYYOL
AAAHH
AAHHH
a4 GHH|

ITITNIIKKL

ITIINIIRRR
HHH I IITRRRK

GHHT IIIRRRR
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L MMINN

RRRKR
HRRRR

RRRRR
10GRR

NNNNOOOOOP)

RRRRRROOOR
RRRRRIQP ANS

RRURRRRAINH
0POOPHRLLR

FPPQQUUAAA
RRROUIRAA A
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RRRRULRAAA

AAAA

AAAA
AAAA

AAAA
AAAA

AAFHG]
BAFGG

AAE GG
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MKJIJ
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HKrRRUFAAAA

AAAA
AAAA
AAAA
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AAAA

AAAFF
AAAFF
AAAFF|
AAAFF
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FGHHGGMMI 1
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UIHKL
HILLV
LNML O
pMOOP
MNNLM

NRRQRFIPRRY
OQONMLURRK
PNMULNLPRKK
NMMLLIL OQRK
MIJJIKMPPNP

HRHKPPAAAAA
PGRPAAAAAA
PNRPAAAAAA
PRPPAAAAAA
PPPPAIAAAAA

A AAD
WAAA
AN LA
AAAA
AAAA

AAAFE
ABAEF

ABAFF
ANAFE
AAAEE

FGHHGGFHIL
FGHHGGFFGI
FGGGGGGFFO
F GGGGGGFFF
FGGGGGGFFF

KKLIH
MIonH
GGGUY
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HJJKL

HJIKJKIKKLKL
ULKLOMMMOQ
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MNQOPPPPPK
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RRRPAAAAAA
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AAAA
AAAA
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AQAFE
AAAFE
AAAEE
AAAEE

FGGGEGGFFF
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AAAA
AAAA
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AAAA
AAAA
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EEEFFFFFFF
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EEEEE

EFFFF
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FGGGGGGHW
EEEEEEEEF
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AAAAL
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AAAA
AAAA
AAAA
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AAAAAAAAAA
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AAAAAAAAAA
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EXPLANAT ION

Code

AOWOZIr~"Gy—=Iommooom >

Head in overlying aquifer

>150
>160
>170
>180
>190
>200
>210
>220
>230
>240
>250
>260
>270
> 280
>290
>300
>310

(feet)
<150
and <160
and <170
and <180
and <190
and <200
and <710
and <220
and <230
and <240
and <250
and <260
and <270
and <280
and <290
and <300
and <310



